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Abstract

We report a new method as UV treatment of low-temperature processed to obtain tin oxide (SnO2) electron transport
layers (ETLs). The results show that the high quality of ETLs can be produced by controlling the thickness of the film
while it is treated by UV. The thickness is dependent on the concentration of SnO2. Moreover, the conductivity and
transmittance of the layer are dependent on the quality of the film. A planar perovskite solar cell is prepared based
on this UV-treated film. The temperatures involved in the preparation process are less than 90 °C. An optimal power
conversion efficiency of 14.36% is obtained at the concentration of SnO2 of 20%. This method of UV treatment SnO2

film at low temperature is suitable for the low-cost commercialized application.
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Background
Perovskite solar cells (PSCs) have attracted enormous
research interest in recent years with power conversion
efficiencies (PCE) enhancing from 3.8 to 22.1% [1–8]. In a
typical perovskite solar cell either with or without meso-
porous scaffold, an absorber layer is sandwiched between
electrode-modified layers including the electron and hole
transport layers (ETLs and HTLs, respectively), namely
the mesoporous scaffold and planar hetero-junction archi-
tectures [9–11]. The high quality of the perovskite layer,
which is smooth, compactive, and uniform, has a crucial
impact on the device performance [12–14]. However, the
quality of the bottom modified layer can directly affect the
preparation of perovskite film. Typically, spin-coating
method [15–17], hydrothermal synthesis method [18, 19],
vacuum evaporation method [20], atomic layer deposition
method [21], and electro-chemical deposition [22, 23]
were adopted to improve the quality of the modified
layers. And then, a compact modified layer was obtained
by annealing and sintering at high temperature. The
temperature is up to 450 and 180 °C when using TiO2

[24–27] and SnO2 [28–31] as the modified layer,
respectively. The TiO2 was obtained by heat treatment of
tetrabutyl titanate precursor, and the SnO2 was obtained
by treatment of SnCl2 precursor [32]. However, the high
temperature is not suitable for modern industrial
manufacture.
To solve this problem, we present our preparation of

compact layer by spin-coating SnO2 precursor and then
treating by ultraviolet ozone (UVO). Here, tin oxide water
solution is used as raw materials of SnO2. Moreover, the
temperatures on each layer of the preparation of PSC are
all at low temperature (less than 90 °C). It is easier to re-
duce technological difficulty of preparation process and to
reduce production cost, which will be suitable for the in-
dustrial production. Our cells are based on CH3NH3PbI3
(MAPbI3), as a narrow band gap and high absorption ma-
terial of visible light, which is processed by means of a
one-step anti-solvent (OSAS) method [33–37]. The archi-
tecture of the planar hetero-junction PSC is Glass/ITO/
SnO2/MAPbI3/Spiro-OMeTAD/Au. The MAPbI3 is sand-
wiched between SnO2 ETLs and Spiro-OMeTAD HTLs,
respectively. After analyzing the surface morphology, sur-
face element distribution, and light transmittance of the
films, our results demonstrate that the SnO2-modified
layer with compactness, purity, and high transmittance
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can be prepared by spin-coating and UVO treatment.
Moreover, the high-performance planar PSCs were pre-
pared at low temperature. The PCE of the PSC is 14.5% by
optimizing the conditions of device preparation.

Methods
Materials and Precursor Preparation
Methylammonium iodide (MAI; Z99.5%) and lead iodide
(PbI2; Z99.9%) were purchased from the Xi’an Polymer
Light Technology Corp. Tin oxide (SnO2; 15% mass in
H2O colloidal dispersion with a few organic solvents)
was purchased from Alfa Aesar. 1,2-Dichlorobenzene
(DCB; 99.5%) was purchased from J&K Scientific Ltd.
N,N-Dimethylformamide (DMF; 99%), dimethylsulfoxide
(DMSO; 99%), 2,2′, 7,7′-tetrakis(N,N-p-dimethoxyphe-
nylamino)-9,9′-spirobifluorene (Spiro-OMeTAD),
4-tert-butylpyridine (TBP), and bis(trifluoromethylsulfo-
nyl)-imide lithium salt (Li-TFSI) were purchased from
Sigma Aldrich. Gold (Au; 99.995%) was purchased from
China New Metal Materials Technology Co., Ltd. All the
reagents were used without further purification.

Fabrication of Devices
The PSC device has a structure of ITO/SnO2/MAPbI3/
Spiro-OMeTAD/Au. The ITO glass plates (a sheet resist-
ance of < 15 Ω/□) were pre-cleaned in an ultrasonic bath
with acetone, ethanol, and de-ionized (DI) water for
15 min each, followed by drying with a nitrogen flow.
Subsequently, the substrates were treated using ultravio-
let ozone cleaner for 15 min at about 60 °C. The SnO2

thin films were prepared by spin-coating the SnO2 (x as
10, 15, 20, and 30%) precursor solution on the clean
ITO glass substrates at 5000 rpm for 30 s and dried at

50 °C for 5 min, then treated by ultraviolet ozone cleaner
for 60 min at about 60 °C. The solution concentrations
of precursor were changed to 10, 15, 20, and 30% by
diluting or condensing the original solution. A 1-M per-
ovskite precursor of MAPbI3 was prepared by dissolving
MAI and PbI2 in a 1:1 M ratio in 9:1 (v:v) mixed solvent
of DMF and DMSO. Then, the precursors were stirred
and heated at 50 °C overnight. For the active layer, the
perovskite precursor was spin-coated at 4000 rpm. for
30 s on top of the SnO2 surface. Diethyl ether, as an
anti-solvent agent, was drop-cast on the substrate at 5 s
before the end of the spin. The samples were
subsequently annealed at 90 °C for 10 min on hotplate
in a glove-box and then cooled down for a few minutes.
The typical thickness of MAPbI3 was about 300 nm. For
HTM layer, 30 μL solution composing of 70 mM
spiro-OMeTAD, 28.8 mM Li-TFSI, and 55 mM TBP in
DCB was spin-coated on the perovskite layer at 5000
rpm. for 20 s. Finally, 100 nm of Au was thermally
evaporated under high vacuum (5 × 10−4 Pa). The depos-
ition rate which was monitored with a quartz oscillating
thickness monitor (ULVAC, CRTM-9000) was approxi-
mately 5 Å/s. The active area of the device is 4 mm2.

Fig. 1 Surface SEM image of SnO2 (a) and the corresponding EDX spectra of ITO/SnO2 film

Table 1 Specific content of each element

Element Wt% At%

CK 00.42 00.92

OK 49.29 87.82

SnL 50.29 11.26

Matrix Correction ZAF Fig. 2 The X-ray diffraction (XRD) pattern of SnO2 after UV treatment
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Characterization and Measurements
Current density–voltage (J-V) characteristics were
measured using a computer-programmed Keithley 2400
source/meter under AM1.5G solar illumination using a
Newport 94043A solar simulator. The intensity of the solar
simulator was 100 mW/cm2. Light intensity was corrected
by a standard silicon solar cell. The transmission spectrum
was measured using ultraviolet/visible (UV–vis) spectrom-
eter (Carry 5000). The surface morphology and structure of
the as-prepared films were characterized using SEM
(JSM-7001F, Japan Electron Optics Laboratory Co., Japan).
The crystalline phase of as-prepared SnO2 film was con-
firmed by power X-ray diffractometry (XRD) (DX-2700,
Dandong Fangyuan Instrument Co.Ltd., Dandong, China).

Results and Discussion
The UV/ozone can produce ultraviolet light that peaks
nearly at 185 and 254 nm with photon energy of 647 and
472 kJ/mol, respectively, which are higher than the bond
energy of C-C, C-O, and C-H of 346, 358, and 411 kJ/mol,
respectively [38–40]. As a result, the UV light will easily

break these chemical bonds while treating. In order to
confirm it, SnO2 film with a concentration of 20% is
selected for elemental distribution spectrometer (EDS)
after UV treatment, and the distribution of the main
components is investigated. Figure 1a shows the SEM of
the selected film. The evenness and uniformity of the film
are good at large scale at the bar of 0.5 um. Figure 1b
shows the element distribution diagram, while the peak
without mark is the peak position of the test electrode
gold. As you can see, the Sn, O, and trace C element are
included. Table 1 is the specific content of each element in
the selected film. After UV treatment, the content of Sn
and O in the film is greater than 99%, and the content of
C is less than 1%. It can be recognized that most of the
organic solvents are removed, and only Sn and O are left
after UV treatment. So this way of processing can get the
high purity SnO2 ETLs, which provides a possibility for
the preparation of high-performance PSCs. Figure 2 shows
the XRD pattern of SnO2 on slide glass after UV treat-
ment. The XRD profile shows diffraction peaks at 2θ
values of 26.5°, 34.0°, 38.1°, 51.6°, and 65.9°, which are
identified as the reflections from (110), (101), (200), (211),
and (301) planes of the rutile type tetragonal structure of
SnO2 (JCPDS41-1445), respectively. The crystallite size of
SnO2 was calculated using the Debye–Scherrer eq. (D =
0.89λ/βcosθ) [41], where D is mean crystallite size, λ is the
X-ray wavelength, θ is the Bragg diffraction angle, and β is
the peak width at half maximum. It provides an estimated
crystallite size of 5.5 nm for the as-prepared sample.
Figure 3a is the structure diagram of the PSC. Figure 3b

is the surface SEM image of the active layer, and the

Fig. 3 Structure diagram of the perovskite solar cell (a) and the SEM image of active layer (b)

Fig. 4 J-V characteristics of the device. The characteristics depend
on the different concentrations of SnO2 which are varied from 10 to
30% under AM1.5G illumination of 100 mW/cm2. The inset shows
the corresponding PCE-V curve

Table 2 Summary of PSC performance under illumination of
100 mW/cm2

Concentration Voc (V) Jsc (mA/cm2) PCE (%) FF Rs (Ω) Rsh (Ω)

10% 1.08 17.92 13.32 0.688 265.4 42,011

15% 1.07 19.44 13.55 0.651 202.9 30,857

20% 1.11 20.11 14.36 0.643 182.8 15,868

30% 1.12 18.67 13.41 0.641 258.9 16,761
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illustration is a cross-sectional view of the ITO/SnO2

(20%) /MAPbI3. It can be observed that the continuity of
perovskite film is good. The particle size of the single
perovskite crystal is larger than 1 μm; the transverse
crystallization of the active layer is very good. The thick-
ness of SnO2 (20%) is about 65 nm, and the thickness of
perovskite is about 384 nm, which is expected to obtain
high-performance perovskite solar cell.
As shown in Fig. 4, the J-V characteristic curves of

device ITO/SnO2(x)/MAPbI3/Spiro-OMeTAD/Au (x =
10, 15, 20, and 30%) under AM1.5G solar illumination of
100 mW/cm2 in ambient air. The detailed results are
given in Table 2. It shows that Jsc of device increase first
and then decrease with the increase of SnO2 concentra-
tion. Jsc of the device with 10% is the smallest and that
with 20% is the largest. The probable reason is, when the
concentration of SnO2 is changed, that the thickness of
film increases which leads to increase resistance. More-
over, the light transmittance of film will be different due
to the different thickness. Voc of device increases with
concentration of SnO2 increasing. The thick SnO2 film
reduces the probability that the holes transport to the
FTO electrode, which is easy to achieve for electrons. It is
advantageous to reduce the recombination of carriers at

the interface. When the concentration of SnO2 was 20%,
the PSCs obtain an optimal performance with Jsc of
20.11 mA/cm2,Voc of 1.11 V, FF of 0.643, PCE of 14.36%,
Rs of 232.8 Ω, and Rsh of 15,868 Ω.
Figure 5 shows the cross-sectional SEM images of SnO2

films. The image scale bar of the films is 100 nm, and its
magnification is × 100,000. The thicknesses of the films
which were prepared at different concentrations of SnO2

were 34 nm at 10%, 48 nm at 15%, 66 nm at 20%, and
97 nm at 30%, respectively. The thickness increased grad-
ually by the increasing concentration of SnO2. In order to
understand the influence on the vertical resistance of the
thickness of SnO2 films, a resistance device was prepared
with a structure as ITO/SnO2(x)/Au. Figure 6 shows the
I-V curves. The resistance between ITO and Au were
98.6 Ω at 10%, 41.6 at 15%, 33.7 at 20%, and 50.8 at 30%.
When the concentrations changed from 10 to 20%, the
vertical resistance reduced, which increased when the
concentration was up to 30%. It differs from the conven-
tional knowledge that the resistance increases with the
increase of thickness. To further analyze the reasons, the
surface SEM of the films was investigated.
Figure 7a–d shows the top view SEM images of SnO2

films at × 50,000 magnification with a scale bar of 100 nm.
And Fig. 7e–h shows the corresponding surface SEM
images at × 200,000 magnification with a scale bar of
100 nm. It can be seen that the uniformity and smooth-
ness of the films are very good at various concentrations,
and the typical crystallite size of SnO2 is about 6.814 nm,
which is quite approximate to that calculated of Debye–
Scherrer eq. (5.5 nm), so that the high-quality active layer
should be obtained when preparing the perovskite absorb-
ance layer. There are just a few minor differences between
them. This slight difference should be the reason that
affects resistance. When the SnO2 concentration is 10%,
the continuity of the films is poor, and some island groups
appeared as shown in Fig. 7a, e. These defects on the
surface introduce partial resistance value. The films are
obviously uniform and even when the concentration
increases to 20% as shown in Fig. 7b, c, f, g, which leads to

Fig. 5 Cross-sectional SEM images of a the ITO/SnO2 (10%), b ITO/SnO2 (15%), c ITO/SnO2 (20%), and d ITO/SnO2 (30%)

Fig. 6 I-V curves of ITO/SnO2(x)/Au, x are 10, 15, 20, and 30%
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an increase in electrical conductivity. While the concen-
tration is up to 30%, the reunion situation is appeared
which leads to an increase in the resistance. Moreover, the
light transmittance of film was depended by the thickness
of the modified layer, which affected the utilization of light
by active materials.
In order to understand the cause, we had tested the

UV–vis transmission spectrum of the SnO2 (x) films, as
shown in Fig. 8. It can be seen that the transmittance of
the films exceeds 75% between 400 and 800 nm. The
peaks are right on 616, 662, 718 nm, and more than
800 nm when the concentrations are 10, 15, 20, and 30%,
respectively. With the increase of the thickness of SnO2,
the transmission peak is red shifted. The absorption range
of the MAPbI3 is between 300 and 760 nm. The transmit-
ted lights are matched with that absorption range of
perovskite while the concentrations are less than 20%.
Therefore, the higher PCE could be obtained due to the
more light utilization. When the concentration is 30%, the
light absorption of active layer is attenuated that leads to a
decrease in PCE. The utilization of light influences the

performance of the PSCs. As a result, the PCE will be
increased first and then decreased with the increase of
concentration, which coincides with the previous results.

Conclusions
In summary, we demonstrated a novel method as UVO
treatment at low temperature which a high-quality SnO2

ETL could be prepared. High-performance PSCs were
obtained by OSAS method. When the concentration of
SnO2 was 20%, the PSCs obtained an optimal performance
with PCE of 14.36%. The analysis results are shown that
the conductivity and transmittance of the modified layer
were depended on the thickness and uniformity of the film,
and high-performance PSC could be obtained at suitable
thickness of the modified film.
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